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Empirical Bayes Rules for Selecting

Good Binomial Populations

1. Introduction

The empirical Bayes approach in statistical decision theory is appropriate

when one is confronted repeatedly and independently with the same decision

problem. In such instances, it is reasonable to formulate the component

problem in the sequence as Bayes decision problems with respect to an unknown

prior distribution on the parameter space and then use the accumulated

observations to improve the decision rule at each stage. This approach is

due to Robbins (1955, 1964). Many such empirical Bayes rules have been

shown to be asymptotically optimal in the sense that the risk for the nth

decision problem converges to the optimal Bayes risk which would have been

obtained if the prior distribution was known and the Bayes rule with respect

to this prior distribution was used.

Empirical Bayes rules have been derived for multiple decision problems

by Deely (1965). He considered selecting a subset containing the best

population. Van Ryzin (1970), Huang (1975), Van Ryzin and Susarla (1977)

and Singh (1977) also studied some multiple decision problems by using

empirical Bayes approach. Recently, Gupta and Hsiao (1983) studied some

empirical Bayes rules for selecting good populations with respect to a

standard or a control. In their paper, the underlying population ni is

uniformly distributed with parameter ei , i 
= 0,l,...,k, and i0 is a control

population. z is said to be good if e > e6 and to be bad if6<a

Let ac l,...,kl be an action. When action a is taken, it means that i

is selected as good if iE a, and excluded as bad if it a. With the loss
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function L(e,a) = Z (e 0-e )I)(e) + e I (6), where
j~a O 

.e
0  jja'j 0  (-

0 (0,0l,... ,o), they proposed some empirical Bayes rules for the problem of

selecting good populations with respect to a standard or a control.

For a similar problem, if the underlying populations have binomial

distribution, then, in general, it is impossible to find a sequence of

empirical Bayes rules which is asymptotically optimal in the sense mentioned

above (see Robbins (1964), Samuel (1963) and Singh (1977)). In this paper,

we are concerned with this problem. Two cases have been studied: one is

that the prior distribution is completely unknown and the other is that the

prior distribution is symmetrical about p = , but its form is still unknown.

In each case, empirical Bayes rules are derived and the rate of convergence

of corresponding empirical Bayes rules is also studied. In each case, it

is found that the order of the rate of convergence is O(exp(-cin)) for some

c > 0, i = 1,2. For the case when the prior distribution is symmetrical about

p in order to improve the performance of the sequence of empirical Bayes

rules, two smoothing methods are studied. Some Monte Carlo studies have

also been carried out. The results indicate that the smoothed competitors

actually perform better than the original empirical Bayes rules.

2. Formulation of the Empirical Bayes Approach
.. Let O nl"' k denote k + 1 populations and let Xi be a random

observation from wi. Assume that X, B(Ni ,pi), where Pi E (Ol) and Ni is

fixed and known. Let no be the control population. For each i =,...,k,

population wi is said to be good if pi> pO and to be bad if pi < PO' where

the control parameter pO Is either known or unknown. Our goal is to derive

some empirical Bayes rules to select all the good populations and exclude

all the bad populations.

. o'* -
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When the control parameter pO is known, the empirical Bayes framework

can be formulated as follows:

(1) Let s = (PIl''k' Pi c(O,I) for i = 1,2,...,k). For each --

Rci, define A(R) = {ijp i > po} , B(g) = {iJp i < p0 . That is, A(R)(B(R))

is the set of indices of good (bad) populations.

(2) Let A = {ala c{l,2,...,kl} be the action space. When action a is

taken, it means that population r, is selected as a good population if

ija, and excluded as a bad population if ija. .

(3) The loss function L(e,a) is defined as follows:

L(k,a) = (Pl-Po) + i A (pO-pi) (2.1) P

where the first summation is the loss due to not selecting some good

populations and the second summation is the loss due to selecting some

bad populations.

k
(4) Let dG() = ii dGi(p i) be the prior distribution over the parameter

i=l

space Q, where G.(.) are unknown for all i = 1,2,...,k.

(5) For each i, let (Xij,Pi), i = 1,2,..., be pairs of random variables

associated with population 7i, where Xij is observable but Pij is not

observable. P.. has distribution Gi. Conditional on P. = Pi' X

is binomially distributed with parameters Ni and plj. Some additional

observations Y.. = (Yil"'" ) are also available. Conditional on

P.j = Plj' Xij and Yijm' m = l,...,n I, are i.i.d. The jth stage

observations are denoted by Zj. That is, = ((Xlj, lj,.".

(Xkj' Y kj ) )

°° .° .
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(6) Let X =(Xl,. ,Xk) be the present observation. Conditional on

=(pl,...,pk),X has probability function

k k HiN xi  Ni-x i
= II fixiPi)= P (l-Pi=l i --~ XI I

Finally, since we are interested in Bayes rule, we can restrict our

attention to the nonrandomized rules.

(7) Let D = {djd x A, being measurable) be the set of nonrandomized

k -

rules, where x = II {O,l,...,N i}. For each dED, let r(G,d) denote the

associated Bayes risk. Then, r(G) = inf r(G,d) is the minimum Bayes risk.

deD

When the control parameter p. is unknown, for the related framework,

the indices in the associated notations should begin at 0 instead of at 1.

In the sequel, (0) will be used to show this additional fact.

We now consider decision rules dn( , Zl""' n) whose form depends on
and 1 j = l,...,n. Let r(G,dn) be the Bayes risk associated with decision

rule dn( , Zl'"" n)" That is,

r(G,d n  I- E f L(g,d n ,  ,. , n )  f( iJk) dG(k )

where the expectation E is taken with respect to (l,...,n) For simplicity,

dn(x , ,...n) will be denoted by dn( ).

Definition 2.1. A sequence of decision rules {dn( )}n.l is said to be

asymptotically optimal (a.o.) relative to the prior distribution G if

r(G,dn) + r(G) as n + =.

n...

. . .. ° ° . • °° .%.... ,° °° - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . °.'', °



5

For constructing a sequence of a.o. rules, we first need to find the

minimum Bayes risk and the associated Bayes rule, say dG From (2.1), the

Bayes risk associated with decision rule d is

r(G,d) = x e( o (po - pi) f( Jg) dG(g)

(2.2)

k
+ X f2 (pi- Po)'(P0,l)(pi)f(kIZ) dG(k)o

where IA) is the indicator function of set A.

The second term in the right-hand side of (2.2) is a constant and does

not affect the determination of the Bayes rule.

Let *iGQx) f2(po - pi)f(xI )dG(e). After integration, one obtains

k
* (X)= A ( T) fi f(x.

where

pof1(x1) -W1(x1) if p0 is known;

(XG ) =(2.3)

W0(x0)fi(x1 ) -Wi(xi)f 0(x0) if p0 is unknown;

f (X) =f f (xjp) dG (P) and

Wi(x) =f pf pxlp)dG (P) f "')px+ (1-p)" dG (p).
0 0\X
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Since fl(x), the marginal probability function of Xi . is always positive

for all x = O,I,...,N i, i = (0), l,...,k, the Bayes rule dG can be obtained

as follows:

dG() = {iIAiG() 01. (2.4)

Now, for each i = (0), 1,...,k, and for each n = 1,2,..., let

Win(Xi) Win(xi; (Xll Y il),...,(x Yin )) be an estimator of Wi(x i) and

fin(Xi) fin(x i; (XilsYIil),...,(XinvY,in)) be an estimator of fi(xi).

Define

WOn(X 0 )fin(X)- Win(xi)fon(xo ) if pO is unknown;

A in( ) =(2.5)
POfin(Xi)Win(Xi) if PO is known;

and

dlIAn(() _ 0}. (2.6)

If Win(X) ) Wi(x) and fin(x) R fi(x) for all x = 0,l,...,N i where

" i means convergence in probability, then Ain( ) 2 AG () for all xc. .. -

Therefore, from a corollary of Robbins (1964), it follows that r(G,dn) r(G)
n

as n ®. So, the sequence of decision rules (dn( )} defined in (2.6) is

asymptotically optimal for our selection problem. Hence, in the following,

all we have to do is to find sequences of estimators, say {Win(x)} and (fin (x)},

I = (0),l,...,k, satisfying Win(x) Wi(x) and fin (X) 2 fi(x) for all x = OI,...,N.

--'°.. . . ........... ......... ... ... . .. ..• . . . . ° . . . . . .. . . .• . .... . ... . -.
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3. Case when the Prior Distribution is Completely Unknown

Robbins (1964) and Samuel (1963), respectively, pointed out that there B

was no way of approximating Wi(x) just by using the observations (Xil, •••X

In order to remedy this deficiency, we take, at each stage, some more observa-

tions (Y ijl,...Yijn) in our model where ni can be any positive integer. S

For simplicity, let ni = 1 for all i - (0),l,...,k.

Estimation of Wi(x) and fi x)

A usual estimator of fi(x) can be given as follows: p

1fn (x) I I (X..) for x-- O,l,...,N. (3.1)

in n j- {x) ...1

Then f in(x) is an unbiased estimator of fi(x), and by the strong law of

large numbers, fin(X) fi(x) with probability 1 for each x =0,,...,Ni .

Hence, fin(x) - f(x) for all x = 0,1,...,Ni•

For the estimation of Wi(x), we consider the following. Define

Vlj(x) = Yij I}(Xij)• (3.2)

Under the condition (5) of Section 2, it is easy to see that E[V. (x)] =

NiWi(x). We then define

nI

Win(x) n Vi(x)/Ni" (3.3)WinX) nj~l 1-J-"--

Since Vii(x), i = 1,2,..., are i.i.d. and bound, it is easy to show that

W. (x)-Wi(x) with probability one for all x = 0,l,...,Ni• Now, let An(X) --
in V 1

and d (x) be defined in (2.5) and (2.6), respectively. From the discussion
n. n
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of Section 2 and the construction of the sequence of decision rules

{dn;=l through (2.5), (2.6), (3.1) and (3.3), we get the following result.

Theorem 3.1. For our decision problem, the sequence of decision rules

Idn}n= 1 is asymptotically optimal relative to the prior distribution G.

Rate of Convergence of Empirical Bayes Rules (dn

Let {6n0=l be a sequence of empirical Bayes rules relative to the

prior distribution G. Since the Bayes rule dG achieves the minimum Bayes

risk r(G) relative to G, r(G,6 n) -r(G) >0 for all n 1,2,.... Thus, the

nonnegative difference r(G,6n) r(G) is used as a measure of the optimality
n

of the sequence of empirical Bayes rules {6nn= . 
-.

Definition 3.1. The sequence of empirical Bayes rules {6n =I is said to

be asymptotically optimal at least of order a relative to G if

r(G,6n) -r(G) < 0(a) as n where lim an =0.

For each i = 1,...,k, define Si = {xExAiG( ) < 01, Ti = {cxJAiG( ) > 01.

Let €1 = mn (-AiG(W)), c2 = min (AiG()) and e = min(l,E2). SinceXCS i  i

l<i<k l<i<k

x is a finite space, therefore e > 0. Now,

0 < r(G,dn) r(G)

= Z E Z ) iG() f (l) Ai(x) T fj(xj)

k k
E S (-)AiG(x)P{Ain(X) R 01 l fj(x()

1=1 [ie-j j=l ic ~

ji

k k
-')AiG~.. . .. . . . . . . . .> 1 -- i~ i

. . .. . ..A. . . . . . . . .
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k k
+ AiG(Ix%)P{Ltin(0) < 01 nt f.(x.

i~l ETj=1 'j

<~ (eS) <n 0~ n~ ) (3.4)

where the last inequality is due to the fact that 0 < f.(x) < 1 and -

A G I< 1. From (3.4), it suffices to consider the behavior of

P{A in W > 01 when and that of P{A i(O) < 01 when kT as n -~for

each i = 1,2,... ,k.

For each e ,

<{ >0 P{A~ ~ j()>~

ihe p0 is( known,

01~ ~ P{ (x ) A1 x1  inx+ Qx) > 

<~ P{f (x) f f(x) > - + P{Win (x)- WA(X.) <-

* since p0 c(0,1).



10

When p0 is known,

PIAn > 0)

< P{WOn (x0)f in(xi) - W in(x i)fOn(xO) - WO(xo)fi(xi) + Wi(xi)fo(xo) >.

P~f. (x°)C

< P~fin(xi)[Won(xO) - Wo(Xo) > L1+ P{Wo(xo)[fin(xi) - fi(xi)] > L4

+ P{fon(xO)[Win(x i) - Wi(xi)] < }+ P{Wi(xi)[fn(X O) - fo(Xo)] < _

P{WO(X 0 ) - Wo(xO ) > } + P'fin(xi) - fi(xi) > }

+ in - W(x1)< - 1 + f (

+ P{W in(xi) -W(xi) < On + P~fOn (x 0 f0(xo) < - }. (3.6)

In (3.6), the last inequality is due to the fact that 0 < Wi(xi), fi(xi) < 1

and that 0 < W in(xi) fin(xi) < 1 where the latter can be easily checked

from (3.1), (3.2) and (3.3).

(3.5) and (3.6) show that it suffices to consider the behavior of

P{fin - fi(xi)1 > S} and P{lWin(Xi) - Wi(xi)1  > 6} for some 6 > 0.

n
From (3.2) and (3.3), W. (X)-W (x) A. (x)/ri where A. (X)in i jl ii 13

YI I (Xj)/NiWi(x). It is easy to see that A. (x), j = l,...,n, are

i.l.d. with mean 0 and finite variance, say si(x), since IAij(x)I j 1.

Therefore, for m > 2,

E[7() E[jI~Xij 13 )

E[Am (x)] <_ E[IAI()I m ] < EJA 2 =(x Ix) <_ a i. (x

. . . . . . . . . . .* . . . . . . . . . . . . . . . . . . . . . . m.

S... ... , a ................................. *-...
,



Let B n(x) no ni(x). Thus, by Bernstein's inequality (see Ibragimov

and Linnik (1971), page 169), for any 6 > 0,

PI Win~x W W1(xI >

n
=( Aj~ MI~x > n26~ (x)B 2 (x)} (3.7)

nn
Siiary frm(.1A f (x) > fB(x) mi( nI (x) whr ..(x) =

{X} 132 13

2(Ifn()- f1 () >6 <j 2. ejxp-) mn6 2 z 1 (),c 1 x).38

fiirom , (3.5) m (3.), fr eac fix C iiW nwer -i

(3.9 p iI

+~~~~~ -1x{ ~-i~ 2 -
P[If fi~xl > 1 1 2 11i i( i(Xa~ )I 38

in 4

Thus wetak 6 f p is nknwn r tke --f p isknon. hen
.. . . . .. . ..4*. . . . .. . . . .. . . . .
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Following an argument analogous to the above, we also get the conclusion

given below:

For each xcT1, i 1,..k

(3.10)

+ 0(exp{- n min(6 2 a-1(x.) Y.xi))).

Now, let c 1 = 4 min(b1,b 2) where b= m i min (6 j x),ci.
m<i<k 10<x<N1  1]

b2 min[ min (62 B 1I(X)9 O.(x))] here m 1 if p0 is known and
b m<i<k L 0<x<N.

m = 0 if p0 is unknown. It is clear that c1 > 0 since a.(x) > 0,

mix1 and x is finite. Thus, we have the following theorem:

Theorem 3.2. Let {d 100=, be the sequence of asymptotically optimal rules

described in Theorem 3.1. Then, r(G,d )-r(G) < Oep- }frsm ,>0

4. Case when Gj(.) are Symmetrical about p = 112

In this section, we suppose that there is sufficient information to

tell us that G.(.) are symmnetrical about p = 1/2 for all i (0), 1,...,k.

Further, we also assume that N. are even integers for all i =(0), 1,...,k.

Estimation of Wi(x) and f.(x

Under the above assumptions, fi(x) =f 1(N1 x) for all x 0,,.,
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Therefore, it is reasonable to use

1 n N.I I{X X(X.. for x ~--

f in(x) fi~n (N~ -X) n N. (41

nj= 1

to estimate f.(x).

For W.i(x), x = ,1,...,N. we will construct a sequence of consistent

estimators {W!n xJ, in terms of fi() ye{O,1,...,N11 by using the

observations (X j 1,... ,n) only. The following lemma is very helpful

for the above purpose.

Lemmia 4.1. Suppose that the prior distribution GI(.) is symmetric about

p =1/2. Then

X+I

(a) Wi(x) q= W!i1 (Ni-x-1) for each x 0 ,1,...,Ni 1.

(b) Wi(x) + W1 (Ni -x) =fi(x) =f 1(N1-x) for each x 0,,.,i

(c) Furthermore, if N1 is an even integer, then, W1 (i) 1 N

Proof: Direct computation.

Theorem 4.1. Suppose that G.(.) is symmetric about p =1/2 and N1 is

an even integer. Then, for each x = ,l,...,N,, Wi(x) can be represented

as a linear function of f.(y), Y 0,,.,
1 V
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Proof: First, from Lemmna 4.1 (a) and (b), for each x 0,,..N1

WiNix) f1(N1-x) W W(N1-X-1).

N.
By taking x T 1 + z and after some simple computation, we have

(2 N = .+22z (2.z1

(4.2)

N i+2-2z W i

Then, by (4.2), Lemmna 4.1(c) and induction, we conclude that for each

Z 1,2, ..., N1 ,WI (-1 - can be represented as a linear function

of f y~ ye{0919 ... 9N).N

Finally, by Lenmma 4.1 (b), we also see that for each x L+ 19...,N.,
2 '

W1(x) can be represented as a linear function of f1(y), yc{O,1,...,N I.

Hence, the proof of this theorem is completed.

By Theorem 4.1, for each x =0,1,... ,N1,

W.(x) o (N1,x,y) f.i(y), (4.3)
1 y0 .O-

where the coefficients o(N1,x,y) depend on Nil x and y. Also, the

values of o(N1,x,y) can be obtained from Lemmna 4.1 (c) and the iterative .

relation (4.2). ....
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We then define

N.

W!i(x) = . 6(Nix,y) 1n(Y) (4.4)y=O i-

where f in(Y) have been defined in (4.1). S

Now, define

Wln(xo)f n(xi) W! (~xi)fln(x ) if PO is unknown,,- o
on 0 in I in i on 0 plukon

(4.5)

Pofin(xi) - W n(xi) if pO is known,

and

dn( ) {ijl n) < O}. (4.6)

From (4.1), it is clear that fi (X) f.(x) with probability 1 as
in i

n - for each xc{O,1,...,Ni}. Therefore, from (4.3) and (4.4),

Win(X) Wi(x) with probability 1 as n + for each xe{O,l,...,Ni}. Thus

we have the following theorem:

Theorem 4.2. Suppose that the prior distributions Gi(.) are symmetrical

about p = 1/2 and N. are even integers for all i = (O),l,...,k. Then, the
1

sequence of decision rules {d}1 is asymptotically optimal relative to

the prior distribution G.

Rate of Convergence of Empirical Bayes Rules {d .

We now consider the rate of convergence of the empirical Bayes rules

{dl}. Following the same discussion as given in (3.4) through (3.6), and
nS

- .~.~ . .- . - t a . ~ -. - ~ . - . . - . . . - - .'



w 16

11

the fact that the estimators ~In (x)) defined in (4.1) share the same

property as that defined in (3.1), it suffices to consider the behavior

of -X x > 61 and P{Win(X) -W1(x) < -61 as n -~for some

6 > 0, for each xc{0,1, ... qN11, 1 = (0), 1,...,k.
From (4.3) and (4.4), for each e01.,N 1

P{Wi1n(X) -W.(x) > 61 = P (Ni~,xqY) 1f y-f( > )
in1 in

N.

where 6 6 1 If e(N.,x,y) =0 for some 0 < y < N1, then
1

P{a(N19x'Y)[f1j (Y) - f(y)] > 61 0. So, we assume B(N1,x,y) 0. When

6(N1,x,y) > 0, then

P{( If y)f~y]>611 = f -~) fiy > I.1~ y 'in'~''' Li~n f1 y ( xy)

When O(N1,x,y) < 0, then

P{8(Ni ,x-y)Ef n(y) -f1(y)] > 61 1 -f ~) f~)< 1 N~~)

In either case, the problem can be reduced to considering the convergence

rate of t{Inl (Y - f (y)I > 621 as n for some 62 > 0. Similarly,
for the convergence rate of P{W!n(X) W W1(x) < -61 where xe{0,1,...,N I and

6 > 0, we also get a similar result. Therefore, by applying Bernstein's
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inequality and following an argument similar to that of (3.7), we conclude

the following theorem: "

Theorem 4.3. Let (d I be the sequence of decision rules defined in (4.6).

Then, {dnin=1 is asymptotically optimal at least of order exp{-c 2nl relative

to the prior distribution G for some c2 > 0.

5. Smooth Empirical Estimation of fi(x) and Wi x.

In this section, we also assume that Gi(.) are symmetrical about

p = 1/2 and Ni are even integers for all i = (0), 1,...,k. In Section 4,

the marginal frequency functions fi(x), xC{O,l,...,Ni1, i = (0), l,...,k, are

estimated in terms of the empirical frequency functions f1 n(X), regardlessin
of the properties associated with the marginal function fi(x). In this

section, by considering some properties related to fi(x) and Wi(x), two

methods for smoothing the estimators fin (x) and Win (x) are studied.

We first need the following lemmas.

Lemma 5.1. Suppose that Gi(.) is symmetrical about p = 1/2 and Ni is an

even integer. Then,

(a) (y+l)fi(y+l) < (Ni-y) fi(y) and (5.1)

(b) Wi(y) < Wi(Ni-Y) (5.2)

for all YE{0,1,...,Ni1 2-D}.

Lemma 5.1 can be verified by direct computation. We omit the

proof here.

............~... .........
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Lemmia 5.2. Let U(x), h(x) be nonnegative functions defined on{O,1,...,N},

where N is an even positive integer, and satisfy

MI UWx x ±4U(N-x-l) for all x 0 ,1,...,N-1.

*(ii) UWx + U(N-x) =h(x) h(N-x) for all x 0 ,1,...,N and

* .(iii) IJWx < U(N-x) for all x 0 ,1....,N/2-1.

Then,

(iv) (x+l) h(x+l) < (N-x) h(x) for all x 0 ,1,...,N/2-1.

Proof: Note that from (i), (N-x) U(x) =(x+l) U(N-x-l). Then, by (ii),

we obtain

(N-x) [h(x) -U(N-x)J (x+l) [h(x+l) -U(x+]fl.

* Hence,

(N-x) h(x) -(x+l) h(x+l)

-(N-x) U(N-x) -(x+l) U(x+l)

>(N-x) U(x) -(x+l) U(x+1) (by (iii))

* >(N-x) U(x) -(x+1) LJ(N-x-1) (by (iii))

-(N-x) [U(x) - -- U(N-x-1))

-0 (by (i)).

Hence, the proof of this lermma is completed.A
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We note that conditions (i), (ii) and (iv) of Lemma 5.2 do not imply

that U(x) < U(N-x) for all x = 0,1,...,N/2-1. The following example "

illustrates this fact.

Example. Take N = 4. Let

7 ,UM =8 U(2) =12 U 28 U(4)= 5 a.U(0) = T, u -M)- l- TM 12-U2 U = -n

h(O) = 0.1, h(l) = 0.3, h(2) = 0.2, h(3) = 0.3, h(4) = 0.1 .

Then, conditions (i), (ii) and (i)v) are satisfied but U(4) < U(O).

From Lemma 5.1, the inequalities (5.1) and (5.2) are always true for .

all y = 0,1,...,N/2-1. However, the empirical frequency functions f!n(X)

and the functions W1 (x) do not always satisfy the above inequalities.
in

Hence, it is reasonable to consider some smoothing of f!i(x) and W(x)

which will satisfy the above inequalities. Two smoothing methods, based on

f! (x) and Wi (x), respectively, are given as follows.
in in

Method 1. Smoothing Based on f .x)...

Let A> 0 (for A > O, A is chosen small). Let mI stand for the number

of times the smoothing process is carried out. Algorithmically, first mI = 0.

Step 1. mI = mI +1. N.
For each y = 0, 1, ... , - -1le , .i(A1 =1 1~) in" ..

Cekwhether . -(ylf(Y)- ~( 1 ) 0or not. If not,N.

1
for y < - 2, let

ain(Alry ) =[(y+l)f n(Y+l)_(N i  1 lZ.'-1q.-Tl
ini" Y) fi11n (Y ) +c n(l y ) / ( i l ' "i-

. . ... . . . . . . . . . . . .

~. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .
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f n(y) f n(Nt-y) 1 f +

fn(Y+) - f n(Ni-Y-l) = f n(y) ain(Ai,y) and

fn.(x) = f n(x) for all x y, y + 1, N1 -y-l, N;-y.

N1
Fory=T" 1, let

ain(Ai,y) = 1(y+l) (N-Y)fn(y) + Cin(Aly)] X

f 0 (Y) f 0 ( ,.,)= , 1 (,) +  I a C&y -. )..

fi (Y+l) - fi+l) ajn(A,,y) and

i0  lNI Ni Ni"

f n(X) = f n(x) for all x $ T" -, Nand 9 + 1.

in n T T

Step 2. Let c n(Alsy) min(Al,f (y) + f? (Y+l)). Check whether (Ni-Y)f.n (y) -i ini fln -'-

(y+l)f 9 (Y+l) - n(Al,y ) 1 0 for all y *0,9,..., i 1  or not.
in n 21 y ~-- rnt

If yes, go to step 3.

If no, let fi (X) f fn(x) for all x = 0,,...,N1, and go to step 1.

N
Step 3. Define W n(X) = x A(NX,y)fOn(y), x =0,,...,Ni y=O

Remark 5.1. (1). We note that when the above smoothing procedure stops,

0 0then the smooth estimators f1 (y) have the property that (y+l)f1 (Y+l)SN t

(Nt-Y)fn(y) for all y 0,,...,--- - 1.

i - .....
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(2). However, it is possible that the above smoothing procedure never stops.

In this situation, we can set up a maximal smoothing time to stop this

procedure. When this happens, the inequality that (y+l)f. (y+l) < (N.yf (y
N. in - I i

N.
for all y =0,1,...,-2 1, is not guaranteed.

Based on the smooth estimators f? Wx and WtP (x, we define decisionin in

rules d 0() n =1,2,..., as follows:n

{ifW0  ( x. W9 (x.)f0 (X ) i sukon
On O in( i in i On 0~O if 0 isukon

-ipf ( W0 '(x <01 if P0 is known.

0 in i in i

Method 2. Smoothing Based on Wl. (x)

Let A2 > 0 (for A2 > 0, A2 is chosen small). We start with a variablem

which stands for the number of times the smoothing carried. At first m2  0.

Stepi1. m2  M 2 +1 N

For each y =0, 1, .. , -1, let 6n(A2 y)=4-0 2 W~()W (N -y)]/2)26n2. Y i(A'[ iny) in

and bin (A 2' y) = Mn~(y) -in 1N - y)]12 + 6in (A 2'Y).

Check ~ i whte !( - > in y) + 'in(A2VY) or not. If not, for y =0, let

~~n(N 4! = (N-) + c(0)bin(A2~~

WI! (0) =W 1 (0)- dOb (

in in i ')

W~ (Ni-1) =NiW~n(0) and

WI W in(x) for all x 0, N1- 1
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For 1 Iy---1 let

W n(Ni -y) W! W(N -y) + c()b(

W~y 1 (y) d- y Y

N1 -y
W(N.-y-1) -1

Wy (yl (N-) ni~n~y' N.-y+l i~n(Ni- n

in =in fralx~yl

N.
Here, c(y) = , -+l)/(Ni+2), d(y) =2(y+l)/(N.+2) for y 0l,.---1

Step 2., Let 61n (A?,Y) =min(A2 Eny)+ nN)/) Cieck whether

N.
' (W e( (N.-y) for all y = ,,.,-9- 1 or not.in in2'y) Win 2

If yes, go to step 3.

* If no, let W1nx inx for all x =0,1,...,N. and go to step 1.
in~x) ~in~1

*Step 3. Let f*(Y = W*n(Y) + W1~ (N.-y) for all y = 0,1,... ,N.
in in in

Remark 5.2. (1) We note that when the above smoothing procedure stops,

then the smooth estimators satisfy that < W* (Ni-y) for
N.i~y W~ny ini

all y 2=01 .Ol -1 - 1 , W*(Y = Y in ( -l-) for all y = O,1,...,Ni-l~'"'2 in'~ N1-y W N
and W ()W~(Nj -y) = f*() (iy for all y = 0,1,... ,Ni. Then

by ~ ~ ~ ~ i Leia52,-(jY)f'ln(y) for ally 0,.. N-

Therefore, method 2 is better than method I in this sense.
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(2) It is also possible that the above smoothing procedure never stops.

Hence, we can set up a maximal smoothing time to stop this procedure. 6

When this happens, for the smooth estimators, the inequality properties

of (5.1) and (5.2) are not guaranteed.

Based on the smooth estimators ft (x) and W*n(x), we define decision S
in

rules d*(.), n = 1,2,..., as follows:n

in i in ion 0-
dn) ={ilP f(x .) - W f (x if pO is known.

Qfin i) Winxi) < isknwn

6. Monte Carlo Studies

For the sequence of decision rules {6 n(x)}n= , the conditional Bayesl

risk at stage n + I given ()"". n is

R(G,6) = f Y L(P,6n()) f(I) dG( ).
xEX

To measure the performance of the sequence of decision rules {6n(Q)Pn--l9

computing the overall risk r(G, 6n ) = ER(G,6 ) is needed, where the expectationn n
E is taken with respect to ( l'""'n)" For the small sample situation, it is p

impossible to analytically determine such values. Therefore, Monte Carlo

simulation is employed.

In this section, we have carried out some Monte Carlo studies to see

the performance of the sequences of decision rules (d'}, {do} and {d*1. Wen n n
let, conditional on pi, Xi x B(Ni'pi) where Ni are even integers for i = 0, 1

and p0 is treated as unknown. We also assume that
v I

,. .'

................................................... .-

. . . . . . . . . . . . . . . . . . . . . . . .. . *.-.. . . . . . . . .
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GiP p r(2ai+2) ai C&i
G (p) f r(2+) y (l-y) dy, i = 0,1.

0 [r(ca.+l)

Hence, the Bayes rule dG is:

Xo+ o+l Xl+c l+l

Select nl as good if N0+2c0+2 - N+2c1+2

A random sample of size 50 was generated by computing from a population

having fi(x) (i=0,0) as probability function. For each n =1,2,...,50,

the conditional Bayes risks R(G,d1), R(G,d ) and R(G,d*) were calculated.

One hundred repetitions were performed. Estimates of the overall risks

1 0r(G,dn), r(G,dn) and r(G,d*) were obtained by averaging the associated

conditional Bayes risks and the standard deviations of the estimated

overall risks were also obtained based on these repeated samples.

In Tables 1-4, we consider the combinations of different Ni s and

L i's values for our decision problem. We let r(G,5 ) denote the average
1 n

of 100 R(G,6 ) values obtained from simulation. The standard deviation
n

associated with r(G,6 n) is given in the corresponding parentheses. It is
n

easy to see that the performances of the sequences of decision rules {d }

and {d*} are always better than that of (d1}, for the cases that

(No, N1, a0 al) = (2,2,4,4) and (No9N1 ,cOcl) = (2,2,6,6), both of them

have the same performance. For the other (No,NM1 ,0Cl)'S, the performance

of {dn } is always better than that of {d }

It is also interesting to note that in most cases, r(G,d*) has then
smallest standard deviation while r(G,dL) has the largest standard deviation.

This fact indicates that the behavior of the sequence of decision rules {d*)

is more stable than the others.
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TABLE 1

Simulation results for the comparative performance of sequences
1 t 0

of empirical Bayes rules (d }, {d ) and {d*).n n n
(No , N1 , a0 , 1) = (2, 2 4, ), r(G) = 0.05287

n r(G, d') r(G, d r(G, dn)

1 0.08936 0.06299 0.06299

(0.00118) (0.00073) (0.00073)

2 0.08426 0.05907 0.05907

(0.00171) (0.00062) (0.00062)

3 0.09188 0.05638 0.05638

(0.00213) (0.00053) (0.00053)

5 0.08745 0.05452 0.05452

(0.00227) (0.00038) (0.00038)

10 0.08299 0.05298 0.05298

(0.00222) (0.00010) (0.00010)

15 0.07899 0.05287 0.05287

(0.00251) (0.00000) (0.00000)

20 0.07767 0.05287 0.05287

(0.00243) (0.00000) (0.00000)

25 0.07849 0.05287 0.05287 p

(0.00234) (0.00000) (0.00000)

30 0.07481 0.05287 0.05287

(0.00212) (0.00000) (0.00000)

35 0.07328 0.05287 0.05287

(0.00215) (0.00000) (0.00000)

40 0.07215 0.05287 0.05287

(0.00203) (0.00000) (0.00000)

45 0.07200 0.05287 0.05287

(0.00213) (0.00000) (0.00000)

50 0.07157 0.05287 0.05287

(0.00212) (0.00000) (0.00000)

. . ... -

. . . . ... . .

• ..-.....' ......... * . .... .. .. ,.. . . .. _ .. -.. .................. . .
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I TABLE 2

Simulation results for the comparative performance of sequences

of empirical Bayes rules {d ). {d I and fd*).

(No$ N 1, 010. c1) (2, 2, 6, 6), r(G) 0.04896

n (.0008) (0056 (0005)

2 0.07188 0.0524 0.0524

(0.00026) (0.00043) (0.00043)

3 0.07577 0.051284 0.05214

(0.0016) (0.0003) (0.0003)

5 0.07272 0.04965 0.04521

(0.00175) (0.00022) (0.00022)

10 0.07098 0.04965 0.04965

(0.00164) (0.00000) (0.00000)

15 0.07111 0.04896 0.04896

(0.00184) (0.00000) (0.00000)
20 0.07090 0.04896 (0.04896)

(0.00173) (0.00000) (0.00000)
25 0.0691 0.04896 (0.04896) -

(0.00183) (0.00000) (0.00000)
30 0.06901 0.04896 (0,04896)

(0.00185) (0.00000) (0.00000)

35 0.06938 0.04896 0.04896

(0.00181) (0.00000) (0.00000)
40 0.0698 0.04896 0.04896

(0.00171) (0.00000) (0.00000)

45 0.06860 0.04896 0.04896

(0.00169) (0.00000) (0.00000)

45 0.0661 0.04896 0.04896

(0.00169) (0.00000) (0.00000) -

so0068 0.049 0.04896 -

(.019 (0000 . 0.00000)
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TABLE 3

Simulation results for the comparative performance of sequences
of empirical Bayes rules {d }, {d ) and fd*).

n n n
(Nos Ni, a0' i) = (4, 4, 4, 4), r(G) 0.04114

n r(G, d kG, d (G, d*)
1 0.08641 0.07389 0.06350

(0.00030) (0.00123) (0.00123)
2 0.09043 0.06071 0.05480

(0.00168) (0.00164) (0.00116)
3 0.08626 0.06396 0.05026

(0.00069) (0.00131) (0.00092)
5 0.08595 0.05851 0.04613

(0.00174) (0.00156) (0.00069)
10 0.08479 0.05546 0.04274

(0.00145) (0.00147) (0.00035)
is 0.07992 0.05596 0.04189

(0.00161) (0.00147) (0.00016)
20 0.07994 0.05536 0.04148

(0.00156) (0.00145) (0.00010)
25 0.07514 0.05358 0.04155

(0.00185) (0.00133) (0.00011)
30 0.07674 0.05446 0.04144

(0.00157) (0.00141) (0.00011)
35 0.07458 0.05449 0.04144

(0.00156) (0.00139) (0.00010)
40 0.07024 0.05312 0.04168

(0.00158) (0.00130) (0.00013)
45 0.06855 0.05267 0.04158

(0.00145) (0.00126) (0.00013)
50 0.06749 0.05187 0.04158

(0.00152) (0.00119) (0.00012)

.-.. 
.. ' -
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3 TABLE 4

Simulation results for the comparative performance of sequences

of empirical Bayes rules Id 1, {d I and {d*1.

(NO N 1, 1309 01 * (4. 4, 6, 6), r(G) =0.03970

n r(G, d') r(G , d) r(G, d*)
n n n

1 0.07415 0.06354 0.05607

(0.00020) (0.00088) (0.00087)

M2 0.07609 0.05526 0.04950

(0.00117) (0.00119) (0.00073)

3 0.07333 0.05737 0.04669
(0.00057) (0.00104) (0.00066)

0.07158 0.05513 0.04275

(0.00110) (0.00108) (0.00051)

10 0.07102 0.05097 0.04079

(0.00132) (0.00103) (0.00024)

15 0.06987 0.05202 0.04006

20(0.00102) (0.00106) (0.00009)
200.06907 0.05035 0.04001

(0.00122) (0.00105) (0.00009)

25 0.06632 0.04973 0.04004

(0.00121) (0.00100) (0.00010)

30 0.06748 0.05067 0.04004

(0.00118) (0.00099) (0.00010)

35 0.06669 0.05024 0.03997

(0.00136) (0.00101) (0.00009)

40 0.06712 0.05034 0.04004

(0.00118) (0.00098) (0.00009)

45 0.06626 0.05110 0.03987

(0.00129) (0.00101) (0.00006)

50 0.06373 0.05042 0.03992

(0.00126) (0.00102) (0.00008)
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